Syllabus

Syllabus for CFF 





Module 1 

Introduction to Compressible Flow- Concept of continuum-system and control volume approach-

conservation of mass, momentum and energy-

stagnation state- compressibility-Entropy relations.

Wave propagation- Acoustic velocity-

 Mach number- effect of Mach number on compressibility-Pressure coefficient-

physical difference between incompressible, subsonic, sonic and supersonic flows-


Mach cone-

Sonic boom- 

Reference velocities- 

Impulse function-  [v] 

adiabatic energy equation-representation of various flow regimes on steady flow adiabatic ellipse.


Module 2
One dimensional steady isentropic flow-  [v]

Adiabatic and isentropic flow of a perfect gas-  [v]
    show v_2a > v_2s  [v]

basic equations-

Area-Velocity relation using 1D approximation- [v]

nozzle [v] and diffuser [v]

    area ratio as function of mach number [v]

mass flow rate- 
        mass flow rate in terms of pressure ratio [v]
        pressure ratio needed for maximum mass flow rate [v]
        maximum value of mass flow rate  [v]
        (2.14) mass flow rate in terms of Area ratio [v]
        (2.15) mass flow rate in terms of Mach Number [v]
                maximum mass flow at M=1, chocking in isentropic flow-   [v]

flow coefficients and efficiency of nozzle and diffuser-

working tables-charts and tables for isentropic flow- 
    Problems
        TS-2 ,
        TY_4.1 using gas table     writing
        TY_4.1_without_gasTable    writing
        TY 4.2 Diffuser , A*          writing

operation of nozzle under varying pressure ratios –
        flow through convergent nozzle, choking [v]
         flow through convergent-divergent (CD) nozzle, choking [v]

over expansion and under expansion in nozzles. [v]
        real case [v]

Module 3
Irreversible discontinuity in supersonic flow- one dimensional shock wave-
    what is a shock wave [v]
    how shock waves are developed [v]
stationary normal shock- governing equations- [v]
    show that  gas velocity is  sonic (ie M=1 )  at maximum entropy point in a fanno process/line. [v]
    show that  gas velocity is  sonic (ie M=1 )  at maximum entropy point in a Rayleigh process/line [v] 

Prandtl- Meyer relations- 
        derivation  of cx.cy=a*^2    [v]
        show that  a*=a*x=a*y [v]

Shock strength- 

Rankine- Hugoniot Relation- [v]
  Derive density ratio across shock   (same as above) [v]

Normal Shock on T-S diagram-

working formula- curves and tables-
     My in terms of  Mx   or Mach number downstream  [v]
     Static pressure ratio across a shock [v]
            show pressure rises py>px in shock (Mx > 1) [v]
     Static Temperature ratio across a shock [v]
          ay/ax  , velocity across a shock [v]
     
3 problems
    1.   prob_y6.1  the state of a gas (r=1.3 ) .....    [v]
    2.   prob_y6.2   [v]
    3.   prob_y6.3

Oblique shock waves - 
supersonic flow over compression and expansion corners (basic idea only).


Module 4
Flow in a constant area duct with friction (Fanno Flow) [v]
Governing Equations- 
        Derivation - 
              (part-1)  figure   [v]
                (part-2)  equations  [v]
                
Fanno line on h-s and P-v diagram-
    on h-s diagram [v]
    on  P-v diagram [v]
Fanno relation for a perfect gas-
Chocking due to friction- 
working tables for Fanno flow-
problems
    problem 8.1  
            part -1 to find d [v]
            

Isothermal flow(elementary treatment only)
problems

Module 5
Flow through constant area duct with heat transfer (Rayleigh Flow)- [v]
Governing equations- 
Rayleigh line on h-s and P-v diagram-
Rayleigh relation for perfect gas-
maximum possible heat addition-
location of maximum enthalpy point-
thermal chocking- 
working tables for Rayleigh flow.
problems

Module 6
6 Compressible flow field visualization and measurement-
6 Shadowgraph-Schlieren technique-
6 interferometer- subsonic compressible flow field -
6 measurement (Pressure, Velocity and Temperature) –
6 compressibility - correction factor- hot wire anemometer-
6 supersonic flow measurement- Shock tube-Rayleigh Pitot tube-
6 wedge probe- stagnation temperature probe- temperature recovery factor –
6 Kiel probe - Wind tunnels – closed and open type-
x

No comments:

Post a Comment